Hero image

520Uploads

200k+Views

107k+Downloads

User centered design poster
IETEducationIETEducation

User centered design poster

(0)
Secondary classroom poster highlighting the design process focusing on the needs of the user at each stage. Download the single poster or order a full set of posters for free from the IET Education website.
Making a vehicle for an egg race
IETEducationIETEducation

Making a vehicle for an egg race

(0)
Designing and making a vehicle to transport an egg in a race In this Easter STEM activity students will design and make a car that can safely carry an egg in a racing event and compete against other designs. This challenge is aimed at secondary school students and could be used as a main lesson activity to teach learners about modelling and prototyping, or as part of a wider scheme of learning covering manufacturing processes and techniques. It could also be used as part of an introduction to aerodynamics. This is one of a set of free resources designed to allow learners to use Easter themes to develop their knowledge and skills in Design and Technology, Engineering and Mathematics. This resource focuses on designing and making a vehicle to transport an egg in a racing event. Download our free activity sheet to see an example of how an egg racer could be made. This could be made to assist the development of workable ideas. This could be used to guide lower ability learners or for learners who produce a design idea that would otherwise not be practical to make. The final vehicles need to be placed on a slight slope for the race. For example, this could be a natural slope, or a plank or board rested on the table. As an alternative to a direct race, the evaluation could be based on the time taken to go down the ramp (which could allow the integration of maths, for example to calculate the average velocity) or determining which vehicle continues furthest along the floor after coming down the ramp. Tools/resources required Card Straws Wooden dowels or skewers with sharp points removed Wheels (wood or card) or plastic bottle tops Card tubes Masking tape Glue Glue guns if available Scissors Rules or rulers for measuring The engineering context Engineers make models and prototypes to test ideas and see how they will work. For example, they will put a model of a car in a wind tunnel to see how aerodynamic the design is. This helps to make designs that use the minimum amount of fuel. Suggested learning outcomes By the end of this fun school project students will be able to design and make a vehicle to transport an egg in a race and they will have an understanding of what is mean by ‘aerodynamics’. Download the free Make a Vehicle for an Egg Race activity sheets, including a bonus crossword using the words from the activity to enhance learning. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Make an amazing bunny pop up card
IETEducationIETEducation

Make an amazing bunny pop up card

(0)
Learn about 3D structures and make a bunny pop up card in this fun Easter STEM activity for kids In this fun STEM activity for kids, students will learn about graphic products and use templates to help them cut out the parts for a homemade Easter card. This activity is aimed at primary school children and could be used as a main lesson activity, to teach learners about the use of templates. This is one of a set of resources designed to allow students to use Easter themes to develop their knowledge and skills in Design and Technology and Mathematics. This resource focuses on making a graphics project, in this case an Easter pop-up bunny card. The teacher will first print the activity sheet, which can be downloaded below, onto thin card and distribute to the learners. Learners can then follow these steps to make their own homemade Easter bunny pop-up card. Once learners have completed each step for themselves, the teacher can explain why templates are used to make objects and how separate parts are used to make a larger structure. Learners will share their completed Easter pop-up cards with the class. What do you think went well? What could be improved? This activity will take approximately 50 – 80 minutes to complete. Tools/resources required Glue sticks Card (various colours) Scissors Coloured paper The engineering context Engineers use nets and card to allow them to make scale 3D models of buildings and other structures, as well as packaging for products. Suggested learning outcomes By the end of this Easter STEM challenge learners will be able to make and assemble an Easter pop-up card from separate parts. Download the free Make an amazing Easter pop up card activity sheet. Also included is a bonus wordsearch to enhance sticky learning. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation.
Balancing forces to design a boat
IETEducationIETEducation

Balancing forces to design a boat

(0)
Balancing forces to design a boat Using knowledge of forces in an engineering design context The balancing forces to build a boat activity tasks participants to apply scientific and mathematical understanding of forces (resistance, buoyancy and thrust) and Newton’s 3 laws of motion, in an engineering and design context. Relate speed to the streamlining in boat design and the shape of a boat’s hull. Consider the balanced and unbalanced forces the boat needs to withstand for maximum efficiency. This activity will demonstrate the principles of hydrodynamics, a similar set of principles to aerodynamics but involving water. This activity is designed to be taught through science and design and technology simultaneously, as a cross-curricular project. However, it can also be tackled independently from each subject. All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs. Tools/resources required Projector/whiteboard The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales. Please do share your classroom learning highlights with us @IETeducation
Marine engineering: How to build a small sail boat
IETEducationIETEducation

Marine engineering: How to build a small sail boat

(0)
Discover marine engineering for kids and learn how to make a model of a sail boat out of craft sticks This marine engineering activity for kids will teach students how to make a model of a sailboat out of craft sticks. Students will learn facts about the United Kingdom’s rich history in the field of marine engineering. This includes building sailing ships like the HMS Victory, commanded by Admiral Nelson at the Battle of Trafalgar. Resources for teachers and activity sheets are provided to help students further their engineering abilities. Activity info, teachers’ notes and curriculum links In this activity learners use of the theme of significant turning points in British history, specifically their achievements in marine engineering, to make a model of a sail boat from craft sticks. They will then test their model to see if it floats. All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your learning highlights and final creations with us on social media @IETeducation or send them via email to IETEducation@theiet.org to be featured in our online gallery. Downloadable content How to build a small sail boat activity How to build a small sail boat presentation Tools/resources required PVA glue Glue spreader Craft sticks Highlighter pens or paints Material for the sail e.g. paper or card The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales.
Design an alarm for your schoolbag
IETEducationIETEducation

Design an alarm for your schoolbag

(0)
**Use the BBC micro:bit programmable system to create a working prototype of a motion detector alarm. ** This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons. Schools are busy environments and it is easy for learner’s bags to be left unattended, taken by mistake or even stolen. Alarm systems using embedded electronics and programmable components can be developed to protect the property of learners during the school day. In this unit of learning, learners will research, program and develop a working school bag alarm system using the BBC micro:bit. Activity info, teachers’ notes and curriculum links In this activity, learners will develop their programmable system using the BBC micro:bit and the device’s inbuilt accelerometer to detect movement. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. Download the activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Medical imaging
IETEducationIETEducation

Medical imaging

(1)
A closer look at the techniques used to scan brain tissue The use of different types of signals is hugely important in all areas of healthcare. Signal processing engineers are involved in everything from extracting information from the body’s own electrical and chemical signals to using wireless signals to allow search-and-rescue robot swarms to communicate with each other. Together with related activities, this resource allows students to investigate the wide range of sophisticated imaging technology available in modern hospitals, and to explore the latest ideas in search-and-rescue robotics. Activity info, teachers’ notes and curriculum links An engaging starter activity making use of the short film ‘Mind Mapping’ (see related resources section below) and encouraging students to think about new technologies and how difficult it is to predict their future development and application. Students consider how engineers have created different and safe techniques of scanning brain tissue. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the free activity sheet! All activity sheets and supporting resources (including film clips!) are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Materials: Fit for purpose
IETEducationIETEducation

Materials: Fit for purpose

(0)
Explore a range of engineered and smart materials The Materials fit for purpose activity comprises a series of short, focused tasks with a strong emphasis on developing creative thinking. Students explore a range of smart materials to identify why they have been specifically designed and engineered to provide the requisite properties and characteristics for a given purpose. This activity requires students to be creative when applying knowledge and understanding in science to a design and technology context. This has a predominantly design and technology, and engineering focus, although the activities could be used in science, either as starters or extension activities. Tools/resources required Projector/Whiteboard The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales. Download the activity sheets for free! All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs. Please do share your classroom learning highlights with us @IETeducation
How to make a simple electrical circuit
IETEducationIETEducation

How to make a simple electrical circuit

(0)
In this activity pupils will assemble a simple electric circuit. This is a great way for KS2 students to develop an understanding of how electric circuits function. This free resource could be used in KS2 as an engaging stand-alone activity to introduce circuits, as an introduction to a design and make project (such as the doorbell activity) or as an extension to add a powered element to another design and make activity (such as adding a motor to the ‘cardboard cars’ activity). This activity will take approximately 50-60 minutes. Tools/resources required Projector/Whiteboard Components: 2 x AA batteries in holder Electric motor (e.g. 3V 13100 Rpm DC Motor) 3 lengths of wire, each 100-150 mm long (only a single length is required if a battery holder with attached wires is used) Either: 2 metal split pin fasteners and 1 paper clip per pupil, or one switch per pupil Sticky tape or electrical insulation tape. If needed: wire cutters/strippers (to cut excess wire lengths) (Potential sources for these components include Rapid online and TTS group) Optional: Hole punches (ideally single hole punches) Pre-made models of the circuit, for demonstration Electrical circuits An electrical circuit is a group of components that are connected together, typically using wires. The wires are typically copper metal, which is highly conductive, coated with insulating plastic, to prevent electric shocks. The circuit must be continuous (i.e., have no breaks) to allow electricity to flow through the components and back to its source, such as a battery. Switches make a gap in the circuit to stop electricity flowing when they are open. The components included in an electric circuit could range from motors, light sources and buzzers to programmable integrated circuits. The engineering context Circuits form the basis of all electrical equipment, ranging from lighting in homes to televisions and computers. Suggested learning outcomes By the end of this activity students will be able to construct an electrical switch, they will understand that a complete circuit is required for electricity to flow and they will be able to construct an electrical circuit. Download the free How to make a simple electrical circuit activity sheet! All activity sheets, worksheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Electrical safety outdoors poster
IETEducationIETEducation

Electrical safety outdoors poster

(0)
Primary classroom poster showing useful rules to observe when using electricity both in and outside the home. Download the single poster or order a full set of posters from the IET Education website.
Spaghetti tower - strengthening structures
IETEducationIETEducation

Spaghetti tower - strengthening structures

(0)
Making the tallest structure The shape of a structure has a significant effect on its strength and its stiffness. A structure made from squares can be made significantly more rigid and less likely to collapse by adding reinforcement to form triangles. This principle is widely used in civil engineering when designing new bridges and buildings. In this activity, pupils develop both their skills in using a glue gun and demonstrate their understanding of how structures can be reinforced, by making a structure from spaghetti. In this activity, participants begin by predicting how a square structure would affect the properties of a building and for any suggestions as to how it could be made stronger. Then working in teams, pupils have 15 minutes to build a structure from spaghetti. This is a competition – the tallest structure wins. The structure must be free-standing – that means nothing else can support it. Each team can only use 12 pieces of spaghetti – they can break some of it into smaller lengths if needed to reinforce the structure. Once the fifteen minutes has passed, each team reviews the structures, comparing which is the tallest and identifying how each structure could have been made stronger or taller. Activity info, teachers’ notes and curriculum links This activity teaches transferable skills to the construction industry and beyond. This activity could be used in Key Stage 2 as a stand-alone activity, as a focused task to develop skills in the use of the glue gun, or as an introduction to a design and make project, such as the spaghetti bridges. If the view of the teacher is that their pupils do not have sufficient maturity to use the glue guns, this activity could be carried out using spaghetti and marshmallows – an example of this is included in the additional websites. Download the free resources! All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Modelling pulley systems
IETEducationIETEducation

Modelling pulley systems

(0)
Model and construct 3 simple pulley systems, designed to lift loads Mechanical systems allow us to perform tasks that would otherwise be very difficult, such as pulley systems that lift objects that would otherwise be far too heavy to move. For example, cranes on building sites that move heavy materials. This KS4 maths resource focuses on the use and application of pulley systems. Activity info, teachers’ notes and curriculum links An engaging activity in which students will model and construct three different examples of pulley systems designed to lift loads. It will build knowledge and understanding of how pulley systems work and their practical uses. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the free activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Nuclear energy debate: pros and cons
IETEducationIETEducation

Nuclear energy debate: pros and cons

(0)
Role play about the advantages and disadvantages of nuclear energy As we rely so heavily on electrical energy in our lives, it’s crucial for students to understand the processes and implications of its generation. Our role play activity will engage the whole classroom through debate, where participants will discuss the advantages and disadvantages of generating electrical energy using nuclear fuel. This is one of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within engineering and design and technology (DT). Activity: Role play about the advantages and disadvantages of nuclear energy In this activity, learners learn about nuclear energy and then assume various roles to discuss and debate a proposal to construct a new nuclear power station in their local area. Learners will review how nuclear power is generated and then weigh its pros and cons. By executing a group role play, students will gain a deeper understanding of the topic. The activity concludes with class feedback, where learners justify their decisions, promoting reflective thinking. Download our activity overview and presentation for a detailed lesson plan for teaching students about nuclear energy. The engineering context Engineering is all about problem-solving and making informed decisions. By debating the construction of a new nuclear power station, students will get a glimpse into the challenges engineers face daily. This activity will inspire them to think like engineers, weighing the pros and cons before making decisions that impact society. Suggested learning outcomes This activity is designed to help students grasp how electrical energy is generated from nuclear fuel and comprehend both the benefits and drawbacks of this method. Furthermore, it encourages learners to apply their knowledge to real-world situations, enhancing their understanding of the issues surrounding electrical energy generation. Download our activity sheets for free! The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. You can download our classroom lesson plan and our PowerPoint presentation. Please do share your highlights with us @IETeducation
Radio waves poster
IETEducationIETEducation

Radio waves poster

(0)
Primary classroom poster looking at how radio waves help us connect to our friends and families. Download the single poster here or order the full set of posters for free from the IET Education website.
Build an Easter bunny basket
IETEducationIETEducation

Build an Easter bunny basket

(0)
Making structures from card and assembling these into baskets In this hands-on STEM activity for kids, students will learn about 3D structures within a graphics projects. The project will involve using templates to help them cut out the parts for an Easter bunny basket. This fun exercise is aimed at primary school children and could be used as a main lesson activity, to teach learners about simple structures made from separate parts. This is one of a set of free resources designed to allow learners to use Easter themes to develop their knowledge and skills in Design and Technology and Mathematics. This resource focuses on building an Easter bunny-shaped basket. The teacher will first print the activity sheet, which can be downloaded below, onto thin card and distribute to the learners. Learners can then follow these steps to build their own DIY Easter bunny basket. Once learners have completed each step for themselves, the teacher can explain how nets are used to make objects and how separate parts are used to make a larger structure. Learners will share their completed bunny baskets with the class. What do you think went well? What could be improved? This activity will take approximately 50 – 80 minutes to complete. Tools/resources required Glue sticks Card Scissors Cotton wool (for the bunny tails) The engineering context Engineers use nets and card to allow them to make scale 3D models of buildings and other structures, as well as packaging for products. Suggested learning outcomes By the end of this STEM challenge learners will be able to understand how structures are made using separate parts and they will be able to make and assemble a bunny basket structure from card parts. Download the free Build an Easter Bunny Basket activity sheet below! Also includes a bonus wordsearch to enhance sticky learning. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation.
Make a DIY Easter Bunny
IETEducationIETEducation

Make a DIY Easter Bunny

(0)
Making an Easter bunny puppet with moving arms and legs In this activity students will learn about simple mechanisms using linkages made from paper products. Learners will have an opportunity to use a template to help them cut out the parts for a cardboard Easter bouncing bunny. This fun STEM challenge aimed at primary school children could be used as a main lesson activity, to teach learners about linkages. This is one of a set of resources designed to allow learners to use Easter themes to develop their knowledge and skills in Design and Technology and Mathematics. This resource focuses on building a card structure, which uses linkages to make the limbs of a bunny move. Follow this step-by-step guide to make your own Easter bouncing bunny. Learners will complete each step for themselves. Once everyone has made their bouncing bunny, the teacher will discuss the results of the activity with learners. The teacher will also explain how linkages are used to make objects move. Download the free activity sheet for more detailed instructions, teachers notes and for optional extension work. Also includes a fun bonus activity to enhance sticky learning. This exercise will take approximately 50 – 80 minutes. Tools/resources required Glue sticks Card or cardboard Scissors String Brass fasteners Pencils Erasers/sticky tack Elastic bands The engineering context Engineers must have a good understanding of mechanisms. Mechanisms are used in every machine that has moving parts, from trains, cars, and washing machines to a space rocket. Suggested learning outcomes By the end of this activity students should be able to understand how to use a linkage to create movement and they will be able to make and assemble a bouncing bunny with moving arms and legs. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation.
Sports logo developement
IETEducationIETEducation

Sports logo developement

(0)
A project to design a sports logo This STEM activity is inspired by the Olympics. Students will learn about logo design by designing and creating a sports logo for a sports team of their choice. This free resource, aimed at secondary school students, will develop learners’ knowledge and skills in design and technology and engineering. Activity sheets for students and resources for teachers are provided below. This fun resource could be used as a one-off main lesson activity to build knowledge of branding and logos. It could also be used as part of a wider scheme of learning focussing on developing creative skills within graphics and graphic design. Imagine that a sports team is designing a new kit and your students have been asked to design a new logo for the team. They want the logo to represent the sport and be eye-catching. Your students will design a sports logo for a sports team of their choice. Their design should use an image or a simple shape that represents the sport. They need to think about how a sports logo is created from a single image. How are colours used to show movement on an object? How can an image of a sports person be converted into a sports logo? How can different shapes be used to add a background to the image? How do you add text to the logo? Then sketch their idea for a sports logo that meets the needs of both the brief and the design criteria given. Designs can be produced on the handout provided or on blank A4/43 paper. Once finished, ask three other people to suggest one improvement each to the design. Then select one of these suggested improvements and use it to update the design. This exercise should take approximately 50-60 minutes to complete. What you will need: Projector/whiteboard Sketching equipment Coloured pencils The engineering context Many top sport teams have logos that have become famous and appear on all their branded products. Suggest learning outcome By the end of this activity students will be able to design a sports team logo. They will also be able to communicate design ideas using sketches, notes and annotations. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. And please do remember to share your activity highlights with us @IETeducation
Sports logo design
IETEducationIETEducation

Sports logo design

(0)
Learn how to design a new logo for a sports team This STEM activity for kids is inspired by the Football World Cup but can be linked to any sporting event, the Olympics for example. Students will learn about logo design by designing and creating a sports logo for a sports team of their choice. This exercise, aimed at primary school students, will develop learners’ knowledge and skills in design and technology and engineering. Activity sheets for students and resources for teachers are provided. This fun resource could be used as a one-off main lesson activity to build knowledge of branding and logos. It could also be used as part of a wider scheme of learning focussing on developing creative skills within graphics and graphic design. Imagine that a sports team is designing a new kit and your students have been asked to design a new logo for the team. They want to logo to represent the sport and be eye-catching. Your students will design a sports logo for a sports team of their choice. Their design should use an image or a simple shape that represents the sport. They will need to think about how a sports logo is created from a single image. How are colours used to show movement on an object? How can an image of a sports person be converted into a sports logo? How can different shapes be used to add a background to the image? How do you add text to the logo? This exercise should take approximately 50-60 minutes to complete. What you will need Projector/whiteboard Sketching equipment Coloured pencils The engineering context Many top sport teams have logos that have become famous and appear on all their branded products. Suggested learning outcomes By the end of this activity students will be able to design a sports team logo. They will also be able to communicate design ideas using sketches, notes and annotations. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Make international flag biscuits
IETEducationIETEducation

Make international flag biscuits

(0)
Create biscuits in national flag colours to celebrate an international sporting event Combine science, maths and design skills to celebrate the different nations taking part in international sporing events such as the Football World Cup and the Olympics. This fun STEM activity focusses on making and decorating biscuits with flags from the different nations. Students will consider the colours and shapes used in different national flags. They will then make and use icing to colour their biscuits in national flag colours from each teams. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. You can download our step-by-step instructions as a classroom lesson plan and PowerPoint presentation. And please do share your learning highlights and final creations with us on social media @IETeducation